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a b s t r a c t

Recombination often concentrates in small regions called recombination hotspots where recombination
is much higher than the genome’s average. In many vertebrates, including humans, gene PRDM9
specifies which DNA motifs will be the target for breaks that initiate recombination, ultimately
determining the location of recombination hotspots. Because the sequence that breaks (allowing
recombination) is converted into the sequence that does not break (preventing recombination),
the latter sequence is over-transmitted to future generations and recombination hotspots are self-
destructive. Given their self-destructive nature, recombination hotspots should eventually become
extinct in genomes where they are found. While empirical evidence shows that individual hotspots
do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction
called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold
extinction? Here we formulate a co-evolutionary model of the interaction among sequence-specific
gene conversion, fertility selection, and recurrent mutation. We find that allelic frequencies oscillate
leading to stable limit cycles. From a biological perspective this means that when fertility selection
is weaker than gene conversion, it cannot stop individual hotspots from dying but can save them
from extinction by driving their re-activation (resuscitation). In our model, mutation balances death
and resuscitation of hotspots, thus maintaining their number over evolutionary time. Interestingly,
we find that multiple alleles result in oscillations that are chaotic and multiple targets in oscillations
that are asynchronous between targets thus helping to maintain the average genomic recombination
probability constant. Furthermore, we find that the level of expression of PRDM9 should control for
the fraction of targets that are hotspots and the overall temperature of the genome. Therefore, our co-
evolutionary model improves our understanding of how hotspots may be replaced, thus contributing
to solve the Recombination Hotspot Paradox. From a more applied perspective our work provides
testable predictions regarding the relation between mutation probability and fertility selection with
life expectancy of hotspots.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recombination—the exchange of genetic material between
arental chromosomes—is a fundamental biological process that
s key in generating DNA variability and trading information
cross genomes (Lenormand et al., 2016; Alves et al., 2017;
tapley et al., 2017; Peñalba and Wolf, 2020). It has a criti-
al impact in ecology and evolution, e.g., selfish genes (Haig
nd Grafen, 1991), genomic architecture (Hansen, 2006), sexual
eproduction (Otto and Lenormand, 2002), speciation (Butlin,
005), and conservation (Frankham, 2005), as well as in human
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disease, e.g., fertility (Nagaoka et al., 2012; Powers et al., 2020),
cancer (Gerton and Hawley, 2005), association between genetic
variants and illness (Slatkin, 2008; Rosenberg et al., 2010). The
impact of recombination relies not only on its intensity but also
on its distribution across the genome. Contrary to prior beliefs,
recombination is not uniformly distributed across the genome but
concentrated in small chromosomal regions where recombination
is ten to a thousand times more frequent than the genome’s av-
erage; these regions are known as recombination hotspots (Petes,
2001; Arnheim et al., 2007; Paigen and Petkov, 2010; Baudat
et al., 2013) (although recombination hotspots are absent in some
species such as Drosophila melanogaster (Heil et al., 2015)). In
humans, most mammals and many vertebrates, the location of
recombination hotspots is determined by the preference of alleles
at the PRDM9 locus for binding specific DNA motifs (Myers et al.,

2008, 2010; Baudat et al., 2010; Cavassim et al., 2022). Henceforth
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e will use the term recombination hotspots to refer to these
RDM9-directed recombination hotspots.
Empirical work shows that recombination is initiated by a

ouble-strand break (Padmore et al., 1991; Goyon and Lichten,
993; Petes, 2001) and results in the conversion of the allele
hat breaks, enabling recombination (hot allele), into the allele
hat does not break, disabling recombination (cold allele) (Petes,
001; Jeffreys and Neumann, 2002, 2005; Baudat et al., 2013).
he mechanism that initiates recombination provides a trans-
ission advantage to the cold allele over the hot allele (Petes,
001; Jeffreys and Neumann, 2002, 2005; Baudat et al., 2013).
t is thus a matter of time that recombination hotspots become
hromosomal regions where recombination is as frequent as the
verage across the genome (Boulton et al., 1997) (henceforth
ecombination coldspots). This loss of activity is often referred
to as the death of individual hotspots (Coop and Myers, 2007).
The self-destructive nature of recombination hotspots means that
they should become extinct in genomes where they are initially
found (Boulton et al., 1997). However, evidence shows that far
from being rare, recombination hotspots are abundant (Myers
et al., 2005; Arnheim et al., 2007; Paigen and Petkov, 2010;
Baudat et al., 2013). The Recombination Hotspot Paradox refers
o the mismatch between the expected scarcity and observed
bundance of recombination hotspots (Boulton et al., 1997): What
aves recombination hotspots from their foretold extinction?
Consistent with the transient nature of individual hotspots

nd their paradoxical long-term persistence, humans and chim-
anzees do not share many recombination hotspots and even hu-
an subpopulations exhibit some level of recombination hotspot
ariation (Ptak et al., 2004, 2005; Winckler et al., 2005; Coop
t al., 2008; Stevison et al., 2015). This suggests that PRDM9 un-
erlies rapidly changing recombinational landscapes (Ptak et al.,
004, 2005; Winckler et al., 2005; Coop et al., 2008; Stevi-
on et al., 2015). Furthermore, empirical evidence indicates that
RDM9 evolves extraordinarily fast to the point that it has been
onsidered the most rapidly evolving gene in many mammals
Ponting, 2011).

Because recombination underpins fundamental biological pro-
esses, the Recombination Hotspot Paradox has received much
ttention (Pineda-Krch and Redfield, 2005; Calabrese, 2007; Pe-
ers, 2008; Úbeda and Wilkins, 2011; Latrille et al., 2017; Úbeda
t al., 2019). In spite of the attention, there is not a fully sat-
sfactory solution to the paradox. The initial attempts to solve
he paradox explored whether the beneficial effects of recom-
ination on fertility—in particular how recombination favours
roper chromosomal segregation during meiosis thus preventing
he formation of aneuploid gametes (Fledel-Alon et al., 2009;
agaoka et al., 2012; Ren et al., 2016; Powers et al., 2020)—
an save recombination hotspots from extinction (Boulton et al.,
997; Pineda-Krch and Redfield, 2005; Calabrese, 2007; Peters,
008). Evolutionary models found that cold alleles spread in the
opulation due to their transmission advantage, even when these
lleles reduce the fertility of individual carriers (Boulton et al.,
997; Pineda-Krch and Redfield, 2005; Calabrese, 2007; Peters,
008). To maintain hot alleles, the benefits of recombination
eeded to be too strong to be realistic (Boulton et al., 1997;
ineda-Krch and Redfield, 2005; Calabrese, 2007; Peters, 2008).
urthermore, when fertility selection is strong enough, natural
election prevents individual hotspots from dying. This result
ontradicts empirical observations on the death of individual
otspots and the rapidly changing recombinational landscape
ver evolutionary time (Ptak et al., 2004, 2005; Winckler et al.,
005; Coop et al., 2008; Stevison et al., 2015; Ponting, 2011).
Advances in our understanding of the mechanisms initiating

ecombination found that, in many vertebrates, alleles at the

RDM9 locus code for a protein that binds a specific sequence
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motif in hotspots (Myers et al., 2008, 2010; Baudat et al., 2010).
Binding between protein and sequence causes a double-strand
break (DSB) that initiates recombination at the binding site (My-
ers et al., 2010; Baudat et al., 2010). This observation led to
the verbal argument that mutations in PRDM9 could create new
recombination hotspots that counteract their individual loss due
to gene conversion (Baudat et al., 2010). This verbal argument
implicitly assumed that selection for a rare PRDM9 would drive
this mutant to fixation in spite of the opposing effects of conver-
sion on its target. The validity of this verbal argument was not
supported by a mathematical model and there was no quantifi-
cation of the strength of selection, if any, that could make this
assumption true.

A first attempt to explore whether this argument was valid,
used an agent-based model to simulate the co-evolution between
PRDM9 and its target sites. This model found that fertility se-
lection, gene conversion, mutation and genetic drift can result
in the formation of new recombination hotspots (Úbeda and
Wilkins, 2011). These authors argue that fertility selection could
drive the birth of hotspots in numbers that compensate their
death, thus leading to the long-term co-evolutionary oscillations
between PRDM9 and its target motifs characteristic of Red Queen
dynamics (Úbeda and Wilkins, 2011; Schenk et al., 2020). How-
ever, the model falls short to establish that fluctuating selection
acting on PRDM9 and its target sites can result in the long-
term oscillations. In particular, the long-term behaviour of the
system is unclear. Due to computational limitations, the number
of generations explored in the model of Úbeda andWilkins (2011)
is not enough to determine whether in the long-term the birth
of hotspots would compensate their death and/or whether the
intensity of hotspots will be maintained. Furthermore, the cause
of any oscillatory behaviour remains obscure. Due to the number
of processes considered (fertility selection, gene conversion, ge-
netic drift, and mutation), it remained unclear whether the birth
of hotspots could be attributed mostly to selection or drift. Thus
a solution to the paradox remained elusive.

A second attempt to understand the long-term persistence
of recombination hotspots, formulated a stochastic model of the
evolution of PRDM9 (a one-locus model) under fertility selection,
mutation and genetic drift (Latrille et al., 2017). This research
also found that fertility selection, mutation and drift can lead to
the birth of recombination hotspots. However, in Latrille et al.
(2017) the dynamics of alleles at target sites was not modelled
explicitly. The model assumed that mutations in PRDM9 result
in fully functional recombination hotspots and that conversion
at target sites is a function of the frequency of alleles at the
PRDM9 locus. That is, Latrille et al. (2017) model the evolution
of alleles at PRDM9, but ignore the evolutionary feedback of
alleles at target sites. However, the dynamics of alleles at PRDM9
cannot be decoupled from the dynamics of alleles at its target
sites—it is their co-evolution that determines whether target sites
will be fully functional recombination hotspots or not, and also
determines how conversion works as a function of the frequency
of motifs at target sites. To show that long-term oscillations
between PRDM9 and its target motifs—Red Queen dynamics—can
solve the paradox, requires modelling the co-evolution of PRDM9
and its target sites (Schenk et al., 2017, 2020)—as opposed to
modelling the evolution of PRDM9 given the assumed oscillatory
behaviour of target sites.

The most recent attempt to understand the long-term per-
sistence of recombination hotspots formulated a deterministic
model of the co-evolution between PRDM9 and one target site
(a two-locus model) under fertility selection and gene conver-
sion (Úbeda et al., 2019). This research found that when a hotspot
dies because its binding motif is replaced by a non-binding motif,

fertility selection favours the spread of a mutant allele at PRDM9
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hat binds precisely the non-binding motif at the same recom-
ination site. Thus, natural selection favours the reactivation of
ecombinational activity at the target site where recombinational
ctivity ceased due to conversion (resuscitation of hotspots). The

model in Úbeda et al. (2019) demonstrates that in the more realis-
tic case when fertility selection is weak, the co-evolution between
PRDM9 and its target sites is more complex than expected from
verbal arguments, and results in two different dynamics: (i) when
both alleles are frequent at the target site, co-evolutionary oscil-
lations between PRDM9 alleles and its target motifs settle into
intermediate recombination levels—midway between the ones in
hotspots and coldspots, (ii) when mostly one allele segregates
at the target site, co-evolutionary oscillations settle (in practical
terms) either into a hotspot or a coldspot. In the long-term,
the first dynamics results in target sites with mild and constant
recombination whereas the second results in hotspots that do not
die. These results are contrary to empirical observations on the
death of individual hotspots and the rapidly changing recombi-
national landscape (Ptak et al., 2004, 2005; Winckler et al., 2005;
Coop et al., 2008; Stevison et al., 2015; Ponting, 2011). The model
in Úbeda et al. (2019) shows that resuscitation and/or birth of
hotspots can either under-compensate or over-compensate their
death but does not balance birth and death of hotspots across the
genome over evolutionary time.

Here we advance the most recent attempt to model the long-
term persistence of recombination hotspots (Úbeda et al., 2019)
by incorporating recurrent mutation, both at the PRDM9 locus
and its target sites—an evolutionary force neglected in Úbeda
et al. (2019). We explore the possibility that the addition of
mutation may result in Red Queen dynamics that, in turn, solve
the paradox. We thus formulate a deterministic model of the
co-evolution between PRDM9 and one target site (a two-locus
model) under fertility selection, gene conversion and recurrent
mutation at both loci. Furthermore, we explore the effect on the
co-evolutionary dynamics of adding realism by having more than
two alleles at each locus and more than one target locus (a three-
locus model). Finally, we bridge the gap between deterministic
predictions and stochastic observations by formulating and ex-
ploring a multilocus finite population version of our deterministic
model.

From a theoretical perspective we discuss the implications
of our model for solving the Recombination Hotspots Paradox.
From a more applied perspective, we discuss the insight provided
by our model into the mechanism and genomic distribution of
PRDM9-directed recombination hotspots. These results allow us
to predict how the life-expectancy of hotspots changes with the
strength of fertility selection, conversion, mutation (at each of the
loci), and the number of targets, thus opening the possibility of
calibrating our model with empirical data.

2. Models

We model the interaction between one locus (the PRDM9
locus) coding for a protein that recognises specific motifs at one
or more loci (the PRDM9 target loci) where crossover may be
initiated. This is the behaviour of gene PRDM9 responsible for the
location of recombination hotspots in humans and many verte-
brates (Myers et al., 2010; Baudat et al., 2010, 2013; Cavassim
et al., 2022).

First we introduce a deterministic model of the co-evolution
between the PRDM9 locus and one of its target loci with any
number of alleles at each of these two loci (a two-locus multi-allele
model). This model describes the change in gamete frequencies
under fertility selection, gene conversion and recurrent mutation
at both loci, when the population is large enough that the effect
of genetic drift can be ignored. However, our research focuses
71
on the special case when the two loci carry two alleles (a two-
locus two-allele model). We diverge from previous co-evolutionary
deterministic models mostly by considering the role of recurrent
mutation at PRDM9 and target loci. In addition, we assume that
recombination between PRDM9 and its target is independent
from crossover at the target site and that there might be fertility
costs due to lack of crossover as opposed to double-strand breaks
at the target site, assumptions that also diverge from previous
work (Úbeda et al., 2019).

To assess the predictive power of this simple model in more
realistic scenarios, we increase the number of alleles at each locus
and the number of target loci in a chromosome. First we explore
the case of a one-target model with three alleles segregating at
each locus. This exploration does not require the formulation of
a new model but relies on the general one-target multi-allele
model already formulated. Second we explore the case of a two-
target model with two alleles segregating at each locus. This
exploration requires the formulation of a two-target multi-allele
model (a three-locus multi-allele model).

Finally, we introduce a stochastic model of the co-evolution
between PRDM9 and multiple target loci with each of these
loci segregating multiple target alleles (a multi-locus multi-allele
stochastic model). This model adds genetic drift to the dynamics
of the deterministic model, thus bridging the gap between the
dynamics of infinite and finite populations.

Following previous work, throughout we assume a randomly
mating diploid population with equivalent sexes and
non-overlapping generations (Boulton et al., 1997; Pineda-Krch
and Redfield, 2005; Úbeda and Wilkins, 2011; Latrille et al., 2017;
Úbeda et al., 2019). We assume that recombination between
PRDM9 and its targets occurs with probability rm, where 0 ≤ rm ≤
1
2 . In all presented numerical results we set rm =

1
2 , as will be the

case if PRDM9 and its targets lie on different chromosomes or are
far apart on the same chromosome.

2.1. One target: Deterministic two-locus multi-allele model

In this model, the PRDM9 locus may carry alleles A1, A2,
. . , AI , each encoding a protein that attempts to bind a sequence
otif at a target locus B. Locus B may carry alleles B1, B2, . . . , BK ,
ach corresponding to a base pair motif that the protein produced
y locus A may attempt to bind. Let xi,k be the frequency of
ype AiBk in gametes. Notice that 0 ≤ xi,k ≤ 1 and

∑
i,k xi,k =

. Random union of gametes results in a zygote with ordered
enotype AiBk

AjBl
with frequency xi,kxj,l. The probability that this

zygote reaches adulthood is independent of its genotype, but its
genotype determines the outcome of meiosis in adults. In each
generation, both PRDM9 alleles in a diploid individual show the
same level of expression. One protein from this pool is chosen
at random (each type of protein having equal probability 1

2
f being chosen) and attempts to bind one of the two target
otifs at random (each target motif having equal probability 1

2
f experiencing a binding attempt). We assume that there is only
ne binding attempt per individual per generation during meiosis.
herefore, in an individual with genotype AiBk

AjBl
, four potential

binding attempts can occur (Ai → Bk, Ai → Bl, Aj → Bk, Aj → Bl),
each with equal probability 1

4 (Fig. 1).
The attempt of protein Ai to bind motif Bk is successful and

results in a double-strand break of allele Bk with probability bi,k.
he binding attempt is unsuccessful and does not result in a
ouble-strand break with probability 1 − bi,k (where 0 ≤ bi,k ≤

)). The probability that during meiosis the protein produced by
RDM9 breaks target Bk is b̄ij,k =

1
2 (bi,k + bj,k) because only one

of the proteins produced by the two modifier alleles attempts a
break. Analogously, the probability that PRDM9 breaks target Bl
is b̄ =

1 (b + b ). Therefore, the probability that the protein
ij,l 2 i,l j,l
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Fig. 1. Model of recombination initiated by a double strand break (DSB) in a specific target sequence. The life cycle starts with the PRDM9 production of a
rotein that attempts to bind a motif at the target locus of one pair of homologous chromatids. If protein and target bind (represented by a match in colour between
ecognition sequence and motif), there is a DSB with probability b, and our model follows the canonical DSB repair model for the initiation of recombination (Szostak
et al., 1983; Sun et al., 1991). Recombination results in crossover between flanking regions of the target with probability rt and conversion of the mismatched
equence with probability c. Recombination also results in crossover between alleles at PRDM9 and target locus on the homologous chromatids that experience a
SB attempt with probability rm . Alleles segregate into gametes fairly. If there is no crossover at the target locus, alleles may not segregate properly resulting in
on-viable gametes with probability f . Finally, mutation take place at each locus with probabilities µA at PRDM9, and µB at its target. For clarity, sister chromatids
re represented in the first and last step only.
w

roduced by PRDM9 breaks one of the two targets (either Bk or
l) is ¯̄bij,kl =

1
2 (b̄ij,k + b̄ij,l) because only one of the two sequence

otifs at the target locus can break (Fig. 1).
A double-strand break initiates recombination, and the chro-

atid that breaks is repaired using its homologous chromatid as
 D

72
a template (Lichten and Goldman, 1995; Petes, 2001). During the
repair process there might be a crossover event in or near the
target locus with probability rt and none with probability 1 − rt ,
here 0 ≤ rt ≤ 1 (Lichten and Goldman, 1995; Petes, 2001).
uring the repair process the allelic motif that breaks is converted
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nto the allelic motif that does not break with probability c and
s restored to the allelic motif that breaks with probability 1 − c ,
here 0 ≤ c ≤ 1 (Szostak et al., 1983; Sun et al., 1991;
ichten and Goldman, 1995; Petes, 2001). Notice that biased gene
onversion results in the over-transmission of the allele that is
ess likely to break (Boulton et al., 1997; Petes, 2001). We assume
hat recombination between PRDM9 and its target is independent
f crossover events at the target site. Consistent with previous
ork (Úbeda et al., 2019), we assume that recombination affects
he pair of homologous chromatids that experience a binding
ttempt only. With probability rm there is recombination between
RDM9 and its target site and none with probability 1−rm, where
≤ rm ≤

1
2 . Recombination ends up with Mendelian segregation

f alleles into gametes (Fig. 1).
Consistent with empirical observations and previous work

Fledel-Alon et al., 2009; Nagaoka et al., 2012; Ren et al., 2016;
owers et al., 2020; Boulton et al., 1997; Pineda-Krch and Red-
ield, 2005; Peters, 2008; Úbeda et al., 2019), we assume that
ndividuals undergoing crossover at the target locus have proper
hromosomal segregation and do not suffer any fitness cost,
hereas individuals that do not undergo crossover at the tar-
et locus may have defective chromosomal segregation produc-
ng aneuploid (non-viable) gametes with probability f (where

≤ f ≤ 1). Therefore, the fitness of individuals experiencing
rossover at the target locus is 1, and the fitness of individuals
ot experiencing crossover is 1 − f . Thus, we require a crossover
t the target, which occurs with probability rt after a double-
trand break, to avoid the fitness cost f . Notice that this cost is
ndependent of any recombination event between the PRDM9 and
he target locus (Fig. 1).

The frequency of type AiBk in gametes after gene conversion
nd fertility selection is

(rs)
i,k =

1
w̄

∑
j,l

[ (
F ¯̄bij,kl + (1 −

¯̄bij,kl)(1 − f )
)
xi,kxj,l

−
1
4
cF

(
b̄ij,kxi,kxj,l − b̄ij,lxi,lxj,k

)
− rm

(
(1 − c) F ¯̄bij,kl + (1 −

¯̄bij,kl)(1 − f )
) (

xi,kxj,l − xi,lxj,k
) ]

,

(1)

where F = rt+(1−rt )(1−f ) is the expected fitness in the presence
f a double-strand break, and

¯ =

∑
i,k

∑
j,l

[
F ¯̄bij,kl + (1 −

¯̄bij,kl)(1 − f )
]
xi,kxj,l (2)

s the population mean fitness. We note that depending on as-
umptions about the molecular mechanism during meiosis, there
re various possibilities to model the interaction of recombination
between PRDM9 and its target) with gene conversion (at the
arget). They lead to slight variations in the above equation, but
he structure and qualitative properties of the model remain
nchanged (see Appendix A.1).
Finally, we add mutation to our model, both at PRDM9 and its

arget locus. We denote the mutation probability from Ai → Aj
t locus A by µA,ij where i ̸= j. The probability that Ai does not
utate is µA,ii = 1 −

∑
j:j̸=i µA,ij. Analogously, we denote the

utation probabilities at locus B by µB,kl. We assume that the
utation probabilities are sufficiently small, so that the proba-
ilities that no mutation occurs are close to one for all alleles Ai

and Bk. Then the probability that the gametic type AjBl changes
to AiBk as a result of a mutation is µA,ji µB,lk (Fig. 1).

Gametic types segregate following Mendelian rules which
brings us back to the beginning of the census. The frequencies of

gametes after gene conversion, fertility selection, mutation and
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reproduction are

x′

i,k =

∑
j,l

x(rs)j,l µA,ji µB,lk , (3)

where x(rs)j,l is given in Eq. (1).
These changes in gametic type frequencies underpin changes

in the population mean crossover probability at the target locus,

r̄t =
1
2

∑
i,k

∑
j,l

¯̄bij,klrtxi,kxj,l , (4)

which is the phenotype whose evolution we are interested in.

2.2. One target: Deterministic two-locus two-allele model

We specify the general model in the previous section for the
particular case when there are two alleles (A1, A2) at the PRDM9
locus and two alleles (B1, B2) at its only target locus, resulting in
four different gametic types (A1B1, A1B2, A2B1, A2B2). We assume
that a match between the subscripts of the PRDM9 allele and
the target allelic sequence results in a double-strand break with
probability b, that is bi,k = b if i = k where 0 ≤ b ≤ 1
and a mismatch between the subscripts prevents a double-strand
break, that is bi,k = 0 if i ̸= k. As such, whether alleles at the
target loci are hot or cold depends on the allele at the PRDM9
locus, with alleles B1 and B2 being hot and cold respectively on
a A1 genetic background, but the same alleles B1 and B2 being
cold and hot respectively on a A2 genetic background. Similarly,
two of the gametic types in this model (A1B1, A2B2) correspond to
types producing a protein that matches its own target sequence
(recombination enabling types) and the other two (A1B2, A2B1)
orrespond to gametic types producing a protein that does not
atch its own target sequence (recombination disabling types).

.2.1. Gamete frequency dynamics
The dynamic system describing the change in frequency over

ime of each of these gametic types can be obtained by replacing
eneric subscripts i and k by specific subscripts 1 and 2 in Eq. (1).
n addition, we switch to the notation: x1 = x1,1, x2 = x1,2, x3 =

2,1, x4 = x2,2. Applying straightforward algebra to the multi-
llelic system (1) we find that the frequencies of the gametic
ypes after gene conversion and fertility selection satisfy

¯ x(rs)1 = w1x1 − δrmD ,

¯ x(rs)2 = w2x2 + δrmD ,

¯ x(rs)3 = w3x3 + δrmD ,

¯ x(rs)4 = w4x4 − δrmD ,

(5)

where

w1 = 1 − (1 − brt )fx1 −

(
(1 −

1
2brt )f +

1
4bc(1 − f (1 − rt ))

)
x2

− (1 −
1
2brt )fx3 − (1 −

1
2brt )fx4 ,

w2 = 1 −

(
(1 −

1
2brt )f −

1
4bc(1 − f (1 − rt ))

)
x1 − fx2

− (1 −
1
2brt )fx3 − (1 −

1
2brt )fx4 ,

w3 = 1 − (1 −
1
2brt )fx1 − (1 −

1
2brt )fx2

− fx3 −

(
(1 −

1
2brt )f −

1
4bc(1 − f (1 − rt ))

)
x4 ,

w4 = 1 − (1 −
1
2brt )fx1 − (1 −

1
2brt )fx2

−

(
(1 −

1
2brt )f +

1
4bc(1 − f (1 − rt ))

)
x3 − (1 − brt )fx4 ,

(6)

¯ =

4∑
xiwi = 1 − f (1 −

1
2brt ) +

1
2brt f (x

2
1 + x24 − x22 − x23) (7)
i=1
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s the population mean fitness, which is not affected by conver-
ion,

= x1x4 − x2x3 (8)

is the classical measure of linkage disequilibrium, and

δrm =
(
1 −

1
2b

)  
no break

(1 − f )  
fertility

rm +
1
2b

break

(1 − f (1 − rt ))  
fertility

( 1
4 c + (1 − c)rm

)  
conversion

(9)

is the effective recombination rate (Supplementary Mathematica
notebook, Section 1). The system (5) has the same structure as
a classical two-locus two-allele model with selection and re-
combination (cf. Bürger, 2000, Chap. II). The effective recom-
bination rate δrm invokes not only the physical recombination
rate between PRDM9 and its target but also the effects of gene
conversion and of fertility selection because, as in classical two-
locus models, it has to incorporate the fitnesses of the double
heterozygotes. If rm =

1
2 and rt = 1 (as we assume in all our

umerical analyses), δrm simplifies to

=
1
2

(
1 − (1 −

1
2b)f −

1
4bc

)
. (10)

Finally, mutation modifies the gamete frequencies after gene
onversion and fertility selection, x(rs)i , according to (3).
In order to visibly reflect the effects of fertility selection and

gene conversion on the selection terms in (5), we define the 4 × 4
matrix

B = b

⎛⎜⎜⎜⎝
1 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 1

⎞⎟⎟⎟⎠ (11)

f break probabilities, the 4 × 4 matrix

= c

⎛⎜⎜⎝
0 −

1
2 0 0

1
2 0 0 0
0 0 0 1

2
0 0 −

1
2 0

⎞⎟⎟⎠ , (12)

f conversion probabilities where entries (cij) measure the ex-
ected gain of gamete i caused by conversion to j (which is
egative if i is converted to j, and positive if j results from
onversion of i), and the 4 × 4 matrix U of ones. Then the ‘fitness’
atrix W underlying the system (5) is given by

= U − f
(
U − rtB

)
+ (1 − f (1 − rt ))B ◦ C , (13)

here ◦ denotes the pointwise (Schur) product of matrices. This
s easy to check by defining the column vector x = (x1, x2, x3, x4)⊤
(⊤ denotes transposition), which contains the four gamete fre-
quencies, and observing that wi =

∑4
j=1 Wijxj and

∑4
i=1 xi = 1.

However, because in our modelW combines the effects of fertility
selection and gene conversion, it is not symmetric and the entry
Wij is best interpreted in the game-theoretic sense as the payoff
of gamete i if ‘playing’ against gamete j.

Because mutations at the two loci occur independently, the
mutation matrix M for gamete types is the Kronecker product

M = MA ⊗ MB (14a)

of the two one-locus mutation matrices

MA =

(
1 − µA µA

µA 1 − µA

)
and MB =

(
1 − µB µB

µB 1 − µB

)
.

(14b)
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With these ingredients, the vector x′
= (x′

1, x
′

2, x
′

3, x
′

4)
⊤ of ga-

metic frequencies after gene conversion, fertility selection, and
mutation is given by

x′
=

1
w̄

M
((
Wx

)
◦ x − d δD

)
, (15)

where d = ( 1, −1, −1, 1)⊤ determines the signs of the linkage
disequilibrium terms. The state space of this dynamical system is
the so-called 4-dimensional simplex, which consists of all vectors
x = (x1, x2, x3, x4)⊤ of (biologically admissible) gamete frequen-
cies (i.e., satisfying xi ≥ 0 and

∑4
i=1 xi = 1). It is representable as

a tetrahedron.
To simplify the matrix W and exposit its structure, we define

the parameters

α = 1 − f (1 −
1
2brt ) ,

β =
1
2brt f ,

γ =
1
4bc(1 − f (1 − rt )) .

(16)

hen W can be written as

=

⎛⎜⎝α + β α − γ α α

α + γ α − β α α

α α α − β α + γ

α α α − γ α + β

⎞⎟⎠ (17)

and the mean fitness becomes

w̄ = α + β(x21 − x22 − x23 + x24) . (18)

e note that 0 < α, β , γ , δ and

< α ≤ 1, γ < α, and 1
2γ ≤ δ < 1

2 . (19)

he matrix W is reminiscent of the so-called symmetric viabil-
ty model (Karlin and Feldman, 1970; Bürger, 2020). It differs
ecause of the asymmetry caused by gene conversion via the
arameter γ . Thus, conversion induces a frequency-dependent

selection component. In addition, it induces negative epistasis be-
cause it provides an advantage to A1B2 over A1B1 and to A2B1 over
A2B2. In the absence of conversion, when only fertility selection
acts (γ = 0, β > 0), the matrix W becomes diagonal and a
pecial case of the symmetric viability model. As is obvious from
he resulting matrix, fertility selection induces positive epistasis
nd divergent selection on the double homozygotes. Further, W
xhibits also strong dominance.
From (15), (17), and (18), we readily infer that the dynamical

quations remain unchanged if we set α = 1 by applying the
escaling β → β/α, γ → γ /α, and δ → δ/α. For the rest of this
aper we assume that α = 1 and β , γ , and δ have been rescaled,
hich does not affect the ratio of c and f .

.2.2. Allele-frequency and linkage disequilibrium dynamics
Often it yields more insight to perform the analysis of the

wo-locus two-alleles model in terms of the allele frequencies,
= x1 + x2 of A1 and q = x1 + x3 of B1, and the linkage

disequilibrium, D, instead of the gamete frequencies. The well
known transformation from (p, q,D) coordinates to (x1, x2, x3, x4)
coordinates is given by x1 = pq + D, x2 = p(1 − q) − D,
x3 = (1 − p)q − D, and x4 = (1 − p)(1 − q) + D. Then the mean
fitness can be rewritten as

w̄ = 1 + β[(2p − 1)(2q − 1) + 2D] . (20)

Straightforward computations (Supplementary Mathematica
notebook, Section 2.2) yield the following set of equations for the
change in allele frequencies and in LD caused by recombination
and selection:

w̄∆(rs)p = βp(1 − p)(2q − 1) , (21a)

w̄∆(rs)q = −(γ − β)q(1 − q)(2p − 1) + γ (2q − 1)D , (21b)
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w̄2∆(rs)D = −(γ − β)p(1 − p)q(1 − q)

−

{
[1 + β(2p − 1)(2q − 1)][δ + β(2p − 1)(2q − 1)]

+ βp(1 − p)[γ − 2(β + γ )q(1 − q)]
}
D

+

{
γ − β + β(γ − 3β)(2p − 1)(2q − 1) − 2βδ

}
D2

+ 2β(γ − β)D3 . (21c)

The term on the right-hand side of (21a) represents direct selec-
tion on locus A. Its strength depends on β (thus on f ) and, through
epistasis, on the allele frequency at locus B, as signified by the
factor (2q − 1). Striking is the absence of a term invoking D. In
typical two-locus models, D is multiplied by a factor reflecting the
strength of direct (additive and epistatic) selection on the other
locus (for a very general treatment see Barton and Turelli (1991)).
With epistasis or dominance this factor is typically frequency
dependent. In the present model, all contributing terms cancel
due to the special structure of the matrix W, i.e., the symmetry
along the diagonal caused by fertility selection, the antisymmetry
across the diagonal induced by conversion, and the lack of selec-
tion in the right upper and the left lower corners, which is due to
the lack of interaction between gametes carrying different alleles
at the PRDM9 locus. In (21b), the first additive term on the right-
hand side is due to direct selection on locus B, which is again
dependent on the allele frequency at the other locus. The factor
(γ −β) shows that fertility selection on the target is counteracted
by conversion. The second term arises from indirect selection on B
transmitted by linkage disequilibrium D with A. Interestingly, D is
multiplied by γ (2q−1) but not by a factor depending on β , which
is responsible for direct selection on the other locus. Again, the
reason for this deviation from intuition lies in the specific form
of epistasis, dominance, and frequency dependence induced by
the interaction of fertility selection and biased gene conversion.

Eq. (21c) for the change of linkage disequilibrium is compli-
cated but shows immediately that if D = 0 (and all alleles are
present), then ∆(rs)D < 0 if γ > β , and ∆(rs)D > 0 if γ < β .
The term in the first line is present because fitnesses are not
multiplicative (cf. Bürger, 2000, Chap. II). The sign of −(γ − β)
confirms that fertility selection induces positive epistasis, hence
positive linkage disequilibrium, and conversion induces negative
epistasis and negative linkage disequilibrium.

With gene conversion, fertility selection and mutation, the
between-generation changes of p, q, and D can be written as
(Supplementary Mathematica notebook, Section 3.3)

∆p = ∆(rs)p − 2µA(∆(rs)p + p −
1
2 ) , (22a)

∆q = ∆(rs)q − 2µB(∆(rs)q + q −
1
2 ) , (22b)

∆D = ∆(rs)D − 2[µA(1 − µB) + (1 − µA)µB](∆(rs)D + D) . (22c)

If mutation is sufficiently much weaker than selection and re-
combination, terms of order two and higher in the mutation
probabilities can be ignored, which slightly simplifies these equa-
tions.

The phenotype we are interested in characterising is the pop-
ulation mean crossover probability at the target site:

r̄t = xT B rt x =
1
2b(x1 + x4 − D)rt , (23)

here the latter equality results after some algebra using that
i xi = 1. For simplicity, and because we are mainly interested in

he ratio r̄t/rt , in this manuscript we assume rt = 1. We note that
¯t/rt assumes values between 0 (only recombination disabling
ypes in the population) and 1

2b (only recombination enabling
ypes present).
75
2.3. Two targets: Deterministic three-locus multi-allele model

In this model we consider three loci—one PRDM9 locus and
two target locus—with multiple alleles at each target. We assume
that both target loci are on the same chromosome.

As in our previous model, the PRDM9 locus segregate alleles
A1, A2, . . . , AI , each encoding a protein that attempts to bind a
sequence motif at target loci B and C. Locus B and C segregate
the same set of alleles T1, T2, . . . , TK , each corresponding to a base
pair motif that the protein produced by locus A may attempt to
bind. Let xi,k,m be the frequency of type AiBkCm in gametes. Notice
that 0 ≤ xi,k,m ≤ 1 and

∑
i,k,m xi,k,m = 1. Random union of

gametes results in a zygote with ordered genotype AiBkCm
AjBlCn

with
frequency xi,k,mxj,l,n.

In each generation, both PRDM9 alleles in a diploid individual
show the same level of expression. One protein from this pool is
chosen at random (each type of protein having equal probability
1
2 of being chosen) and attempts to bind one of the four target
otifs at random (each target motif having equal probability 1

4
f experiencing a binding attempt). We assume that there is only
ne binding attempt per individual per generation during meiosis.
herefore, in an individual with genotype AiBkCm

AjBlCn
, four potential

binding attempts can occur (Ai → Bk, Ai → Bl, Ai → Cm, Ai → Cn,
j → Bk, Aj → Bl, Aj → Cm, Aj → Cn), each with probability 1

4 .
The attempt of protein Ai to bind either motif Bk or Cm is

successful and results in a double-strand break with probabilities
bi,k or bi,m respectively (where 0 ≤ bi,k, bi,m ≤ 1). During meiosis
the protein produced by PRDM9 breaks either target Bk or Cm with
probabilities b̄ij,k =

1
2

(
bi,k + bj,k

)
or b̄ij,m =

1
2

(
bi,m + bj,m

)
respec-

tively. The protein produced by PRDM9 breaks one of the two tar-
gets in either locus B or C with probabilities ¯̄bij,kl =

1
2

(
b̄ij,k + b̄ij,l

)
or ¯̄bij,mn =

1
2

(
b̄ij,m + b̄ij,n

)
. Finally, the protein produced by

PRDM9 breaks one target at one locus—because only one break
is possible—with probability ¯̄bij,kl,mn =

1
2

(
¯̄bij,kl + ¯̄bij,mn

)
.

A double-strand break initiates recombination at target B or
. This process results in crossover near one of the target loci
ith probability rt , where 0 ≤ rt ≤ 1, and the conversion of
he allelic motif that breaks into the allelic motif that does not
reak with probability c , where 0 ≤ c ≤ 1. We assume that
ecombination between PRDM9 and its targets is independent
f crossover at each target site. For simplicity, we assume that
ecombination affects both pairs of homologous chromatids the
air that experiences the binding attempt and the pair that does
ot. The probability of recombination between loci A and B, B and
, and A and C is rm in all cases, where 0 ≤ rm ≤

1
2 . Recombination

ends up with Mendelian segregation of alleles into gametes.
Finally, we assume that individuals undergoing crossover at

one of the two target loci have proper chromosomal segregation
and do not suffer any fitness cost, whereas individuals that do
not undergo crossover at neither of the two target loci may have
defective chromosomal segregation with probability f (where 0 ≤

f ≤ 1). This is consistent with the assumption that both target
loci reside in the same chromosome. Therefore, the fitness of
individuals experiencing crossover at one of the target loci is F ,
and the fitness of individuals not experiencing crossover at any
of the target loci is 1 − f . Notice that this cost is independent of
any recombination event between the PRDM9 and its target loci.
For simplicity we assume rt = 1 and thus F = 1

For clarity, we separate the steps of recombination between
the three loci modelled (A, B, C), and recombination between the
flanking regions of each of the targets (B and C). We start by
considering recombination between the three loci first, followed
by recombination between the flanking regions of the targets.
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f events and reversing the order does not change the outcome.
The frequency of genotype AiBkCm

AjBlCn
following recombination

etween the loci is(
xi,k,mxj,l,n

)(r)
= (1 − rm)2xi,k,mxj,l,n

+ rm(1 − rm)(xi,l,nxj,k,m + xi,k,nxj,l,m) + r2mxi,l,mxj,k,n .

(24)

Then the frequency of the gametic type AiBkCm following se-
lection is

x(rs)i,k,m =
1
w̄

∑
j,l,n

[(
1 − f (1 −

¯̄bij,kl,mn) −
1
8 c

(
b̄ij,k + b̄ij,m

)) (
xi,k,mxj,l,n

)(r)
+

1
8 c

(
b̄ij,l

(
xi,l,mxj,k,n

)(r)
+ b̄ij,n

(
xi,k,nxj,l,m

)(r))]
,

where

w̄ =

∑
i,k,m

∑
j,l,n

[
1 − f (1 −

¯̄bij,kl,mn)
]
xi,k,mxj,l,n . (25)

Finally, recurrent mutation at the three loci A, B and C takes
place. Let µC,mn be the mutation probability from Cm → Cn
where m ̸= n. For simplicity, we assume that mutation occurs
as frequently in one direction as in the opposite, that is µA,ij =

µA,ji = µA, µB,kl = µB,lk = µB and µC,mn = µC,nm = µC . We
also assume that mutations are sufficiently rare to ignore multiple
mutations. Then the frequency of the gametic type AiBkCm at the
beginning of the next generation is

x′

i,k,m = x(rs)i,k,m

(
1 −

∑
j:j̸=i

µA −

∑
l:l̸=k

µB −

∑
n:n̸=m

µC

)
+

∑
j:j̸=i

x(rs)j,k,mµA +

∑
l:l̸=k

x(rs)i,l,mµB +

∑
n:n̸=m

x(rs)i,k,nµC . (26)

These changes in frequency over the life cycle underpin
changes in the population mean crossover probability in targets
B and C, denoted by r t(B) and r t(C), respectively, and the popula-
ion mean crossover probability across all targets (genomic mean
rossover probability), denoted by r t . The expressions for these
henotypes are

r t(B) =

∑
i,k,m

∑
j,l,n

bij,kl rt xi,k,m xj,l,n , (27a)

r t(C) =

∑
i,k,m

∑
j,l,n

bij,mnrtxi,k,mxj,l,n , (27b)

r t =
1
2 r t(B) +

1
2 r t(C) . (27c)

.4. Stochastic multi-target multi-allele model

To bridge the gap between predictions driven by selection
nly and observations driven by selection and genetic drift we
ormulate a stochastic version of our deterministic model. In
articular, we formulate a multi-locus multi-allele model.
We consider a population of N diploid individuals that carry

one chromosome where one PRDM9 locus and a variable number
of target sites are located. We assume that all loci (PRDM9 and its
targets) recombine freely. That is, the probability of recombina-
tion between any pair of loci is the same rm and equal to one half,
i.e., rm =

1
2 . We assume that PRDM9 segregates as many alleles

as alleles segregate at all target sites, whereas each target site
segregates only two alleles. The life cycle of our finite population
is equivalent to the life cycle of our infinite population.

We model recombination between flanking regions following
ecombination between loci. We start by randomly choosing, with
qual probability 1 , one of the two allelic copies in PRDM9 to
2

76
produce the protein that will attempt to bind one of the target
loci. In contrast with our deterministic models, we allow for more
that one binding attempt per meiotic event per generation. To
allow comparisons between models we assume that there is a
single break attempt in all cases except one the case explored
in Fig. 10. We choose randomly, with equal probability, one or
multiple target loci to experience the binding attempt of a PRDM9
protein. We choose randomly, with equal probability 1

2 , one of
the two sequence motifs at the target site to be the motif that
the protein attempts to bind. If the recognition sequence in the
protein and the sequence motif in the target match (signified by
the match between subscripts of the allele producing the protein
and the allele object of a binding attempt), protein and target
bind and result in a double-strand break with probability b. In
case of a double-strand break, the broken motif is converted into
its unbroken homologue with probability c , and all gametes pro-
duced by that individual are fully viable. In contrast, if there is no
break, the broken motif is restored to its original sequence with
probability 1− c and with probability f the gametes produced by
that individual are not viable.

Finally, Mendelian segregation is modelled by choosing ran-
domly, with equal probability 1

2 , one of the two possible homo-
logues to be included in the gamete pool produced by parents.
Following segregation we model recurrent mutation at all loci.
Mutations occur with probability µA at the PRDM9 locus. For
simplicity we assume that mutation transforms each allele at
PRDM9 into all other possible types with equal probability. Mu-
tations occur with probability µB at all target loci. Similarly, we
assume that mutations transform each allele at targets into all
other possible types within each target with equal probability.
We model selection by randomly choosing two gametes from the
gamete pool. Each chosen gamete is retained with probability
equal to its fertility (1 or 1 − f ). If a gamete is discarded we
randomly choose a new one until two gametes are retained to
form a new zygote. This process continues until N individuals
have been produced.

This life cycle is iterated for a large number of generations.
We use the first 2000 generations as a burn-in phase, during
which we assume that there is no actual effect of PRDM9 and
target alleles, that is no gene conversion (c = 0) and no fertility
selection (f = 0). This allows to shuffle the whole population and
reach a crossover–mutation–drift equilibrium. After the burn-in
phase, conversion c and fertility f are set to the values we are
simulating and we let the system evolve.

Because the population is finite, so that allele frequencies
and crossover probabilities vary stochastically, we calculated the
periods of the oscillations as follows. The algorithm finds the
first generation of a shift from a hot (high crossover probability)
to a cold state (low crossover probability), and then calculates
the number of generations between each of the following shifts.
Eventually, mean and standard deviation are computed.

3. Results

3.1. One target: Deterministic two-locus two-allele model

3.1.1. Analytical results
Much of the subsequent analysis will rely on a perturbation

approach that assumes that mutation is much weaker than selec-
tion and recombination. In this case, we assume that µA and µB
are sufficiently small such that terms of order µ2

A, µ
2
B, and µAµB

can be ignored.
In the absence of mutation there are four corner equilibria

x∗1
= (1, 0, 0, 0), x∗2

= (0, 1, 0, 0), x∗3
= (0, 0, 1, 0), and x∗1

=

(0, 0, 0, 1) which correspond to fixation of the gametic types
A B , A B , A B , and A B respectively. It was shown in Úbeda
1 1 1 2 2 1 2 2
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Fig. 2. Examples of dynamics of the allelic frequencies in the parameter region f < 1
2 c . Red and blue are used to represent the trajectories leading to the

table limit cycle and the internal equilibrium respectively. Panel A displays the dynamics in the (p, q,D)-space. It shows that the linkage disequilibrium is always
negative. If the allele frequencies converge to a cycle, the linkage disequilibrium also converges, but remains weak. If the allele frequencies converge to the symmetric
equilibrium, the linkage disequilibrium converges to a fixed negative value that is considerably smaller than the linkage disequilibrium along the stable cycle. Panel
B displays the dynamics in (p, q)-space. It shows the existence of an unstable limit cycle between the stable limit cycle and the internal equilibrium. The initial
conditions are the same in both panels. Note that two trajectories start near the unstable limit cycle (the starting points are indistinguishable). Parameter values are
f = 0.4, b = c = 1, rm =

1
2 , µ = 10−5 .
x

f

et al. (2019) that when β > γ , x∗1 and x∗4 are linearly stable and
∗2 and x∗3 are unstable, however when β < γ , all four corner
quilibria are saddles.
General theory (e.g., Karlin and McGregor, 1972, Theorem 4.4)

hows that: corner equilibria that are unstable in the absence of
utation leave the state space, the simplex, when weak mutation

s added; and corner equilibria that are stable in the absence
f mutation move into the simplex when mutation is added.
herefore, when β > γ , x∗2 and x∗3 leave the simplex when
utation is introduced, and x∗1 and x∗4 move into the interior
f the simplex. For weak mutation, the coordinates of x∗1 and
∗4 are given in Appendix A.3. Furthermore, these two equilibria
re linearly stable if mutation is sufficiently weak (Karlin and
cGregor, 1972, Theorem 4.4). When β < γ , all corner equilibria

eave the simplex when mutation is introduced and there are no
ther equilibria in close vicinity to the corners (again by Theorem
.4 in Karlin and McGregor, 1972).
77
In the absence of mutation, a symmetric internal equilibrium,
∗5, exists always. It has all alleles present at frequency 1

2 and
exhibits linkage disequilibrium given by Eq. (A.3) in Appendix. It
was shown in Úbeda et al. (2019) that when β > γ then x∗5 is a
saddle point, and when β < γ then x∗5 is linearly stable. Except
or the degenerate case β = γ , these five equilibria are the only
equilibria (Appendix A.2).

General theory (e.g., Karlin and McGregor, 1972, Theorem 4.4)
shows that under weak perturbation, an internal equilibrium
maintains its stability properties if the unperturbed equilibrium
is hyperbolic. Hyperbolic means that there is no eigenvalue of
modulus 1. Therefore, upon introducing mutation, when β >

γ the perturbation of x∗5 remains a saddle point under weak
mutation (and all eigenvalues are real), and when β < γ the
perturbation of x∗5 remains linearly stable. At this symmetric
internal equilibrium, also denoted x∗5, the allele frequencies of
A1 (p∗) and B1 (q∗) remain 1 each, independently of mutation. It
2
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xhibits substantial linkage disequilibrium (D∗), which is positive
f β > γ and negative if β < γ . Explicit expressions are given
n Eqs. (A.7) and (A.8). The stronger mutation, the closer is D∗ to
, i.e., mutation weakens the linkage disequilibrium—notice how-
ver that mutation neither eliminates the linkage disequilibrium
or changes its sign (see Appendix A.3).
If β < γ , then the condition

>
(γ − 2β)2

8γ

√
γ − β

β
(28)

mplies that, in the absence of mutation, the symmetric equilib-
ium has a pair of conjugate complex (i.e., non-real) eigenvalues
Supplementary Mathematica notebook, Section 2.4). Hence, the
ymmetric equilibrium is a spiral sink in this case. This property
s maintained under weak mutation because eigenvalues change
ontinuously. Notice that condition (28) is missing in Úbeda et al.
2019).

In summary, this analysis shows that existence and stability—
ence dynamical properties of the system—depend decisively
n the relative strength of fertility selection and conversion. If

> γ , which is equivalent to f > c
c+rt (2−c) , the symmetric

internal equilibrium is unstable, in fact a saddle point, and the
two equilibria x∗1 (close to fixation of A1B1) and x∗4 (close to
fixation of A2B2) exist and are linearly stable. If β < γ , i.e., if f <

c
c+rt (2−c) , then there is no equilibrium close to the boundary and
he symmetric internal equilibrium x∗5 is linearly stable and has
egative linkage disequilibrium. Thus, crossover enabling gametic
ypes are under-represented at the internal equilibrium.

In addition, solutions starting close enough to the internal
quilibrium spiral towards it if condition (28) is satisfied, which
s the case if the effective recombination probability δ is not too
mall. Because in the absence of mutation, a stable heteroclinic
rbit can exist if β < γ (Úbeda et al., 2019), with mutation it
ay be replaced by a stable limit cycle close to the boundary.
e have not proved this, but numerical work suggests existence

nd (local) stability of a limit cycle (see below). In Appendix A.4,
e prove that if β < γ , then any attractor (hence the limit cycle
hen it exists) exhibits negative linkage disequilibrium.

.1.2. Numerical results
In the previous section we found that β = γ , equivalent to

=
c

c+rt (2−c) determines the change in qualitative behaviour of
he dynamic system. Notice that c

c+rt (2−c) increases from 1
2 c to

when rt decreases from 1 to 0. Henceforth, for simplicity, we
ssume that rt = 1 (unless stated otherwise) which implies that
he condition for a change in behaviour reduces to f =

1
2 c.

We start by assuming that fertility selection is stronger than
ene conversion, that is f > 1

2 c . Recall from above that, in this
ase, there are three equilibria: two of them, x∗1 and x∗4, near the
orners and stable, and one of them, x∗5, internal and unstable.
umerical iteration of the dynamical Eqs. (22) suggests that the
rajectories always converge to one of the equilibria where one
f the crossover-enabling gametes is close to fixation, x∗1 or
∗4. Our finding recovers previous results indicating that strong

fertility selection prevents the death of individual recombination
hotspots (Boulton et al., 1997; Pineda-Krch and Redfield, 2005).

In the rest of this section we will focus on the more realistic
ase when fertility selection is weaker than gene conversion, that
s 0 < f < 1

2 c . Recall from above that there is only one equilib-
rium, x∗5, which is internal and stable if the mutation probability
is small. Numerical iteration of the dynamical Eqs. (22) suggests
that, depending on the initial conditions, the trajectories either
approach the internal equilibrium or a limit cycle (Fig. 2).

Using numerical methods, we mapped the set of initial con-
ditions leading to one dynamic behaviour or the other (Fig. 3).
78
Fig. 3. Basin of attraction of limit cycles and each equilibrium. This figure
depicts the frequency of gametic type A1B1 (x1) as a function of the fitness cost
f for given values of rm, b, c, µ. When f > 1

2 c and µ > 0 equilibria x∗1, x∗4, x∗5

re biologically meaningful. Equilibria x∗1 , x∗4 are stable whereas equilibrium x∗5

s unstable. The figure is constructed by starting trajectories at different initial
onditions, sampled at equally spaced intervals along the line connecting corners
1, 0, 0, 0) and (0, 0, 0, 1) for which (x1(0), x2(0), x3(0), x4(0)) = (x1(0), 0, 0, 1 −

1(0)). Initial conditions above the dotted curve (which represents equilibrium
∗5) lead to equilibrium x∗1 while those below x∗5 lead to x∗4 . This behaviour is
ummarised using inset (i), which represents the dynamics in the allelic space
p, q). When f < 1

2 c and µ > 0, only equilibrium x∗5 is inside the region
here x1 has biological meaning. Equilibrium x∗5 is stable. Trajectories starting

at initial condition x1(0) within the white region spiral towards the symmetric
internal equilibrium (see inset ii). When initial conditions are within the red
region, the solutions oscillate towards a limit cycle (see inset iii). As the mutation
probability increases, the set of initial conditions converging to the stable limit
cycle shrinks.

We observe that when the initial standing variation at the target
site is low, the trajectories converge to a limit cycle where the
four gametic types oscillate regularly and permanently over time
(Fig. 2). Interestingly, we also found that the higher the mutation
probability the lower the standing variation at the target site that
can lead to a limit cycle (Fig. 3). Compared to the absence of
mutation (Úbeda et al., 2019), we find that mutation qualitatively
alters the dynamic behaviour of the system from a heteroclinic
cycle (lacking biological meaning (Haig and Grafen, 1991)) to
a stable limit cycle. We also find that, mutation reduces the
parameter space where oscillations are observed, the greater the
mutation rate the smaller the basin of attraction of the limit
cycle (Fig. 3). As already noted, the limit cycle emerges from the
heteroclinic orbit at the boundary when mutation is introduced.
When the mutation rate is increased, it ceases to exist at a critical
value (not much higher than µ = 2× 10−5 in Fig. 3). Apparently,
this occurs when it merges with an unstable cycle, which for
smaller µ lies in the manifold separating the basins of attraction
of the stable symmetric equilibrium x∗5 and the stable limit cycle.
Apparently, no (generalised) Hopf bifurcation occurs at x∗5.

To gain intuition on the oscillatory behaviour of our system,
we rewrite Eqs. (22a) and (22b) as follows:

∆p = (1 − 2µA)  
(+)

fertility  
b
w̄
fp(1 − p)  

(+)

(q −
1
2 )−

mutation  
2µA(p −

1
2 ) , (29a)

∆q = (1 − 2µB)  
(+)

[ fertility/conversion  
b
w̄
(f −

1
2 c)q(1 − q)  
(−)

(p −
1
2 )+

linkage  
b
w̄

1
2 cD  
(−)

(q −
1
2 )

]

−

mutation  
2µB(q −

1
2 ) . (29b)
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Fig. 4. Periodicity of limit cycles. Panel A displays the period of limit cycles as a function of the fitness cost f within the parameter region (0, 1
2 c). Results

re illustrated for different mutation rates µ = µA = µB . The parameter values used to create this figure are b = c = 1, rm =
1
2 . Initial conditions are

x1(0), x2(0), x3(0), x4(0)) = (a, 0, 0, 1 − a) where a = 0.005). Panel B displays the genetic and phenotypic oscillations over time. Sub-panel B.i displays the case
hen 0 < f < 1

4 c. Here the transition from hot to cold is faster than the transition from cold to hot. We refer to this type of dynamics as ‘‘sudden death dynamics’’.
To create this panel we assumed f = 0.1. Sub-panel B.ii displays the case when 1

4 c < f < 1
2 c . Here the transition from cold to hot is faster than the transition from

ot to cold. We refer to this type of dynamics as ‘‘sudden birth dynamics’’. To create this panel we assumed f = 0.4. Within each sub-panel there are three figures:
he first one depicts the change in allele frequencies in the limit cycle. The second and third figures depict the change in population mean crossover probability (r̄t )
t the target locus over time. Red colours correspond to high crossover probabilities (hotspot), and blue colours correspond to low crossover probabilities (coldspot).
n Panel B we assumed that b = c = 1, rm =

1
2 , µ = 10−9 . In both panels rt = 1 and initial conditions are p(0) = 0.99, q(0) = 0.01, D(0) = 0.
(
i
b

s

t

rom inspecting these equations we conclude that the contribu-
ion of fertility, f , to changes in the frequency of A1 (p) depends
n the frequency of B1 (q). It is positive when B1 is more abundant

than B2 (q > 1
2 ) and negative otherwise; notice that the sign of

(1 − 2µA) b
w̄
fp(1 − p)(q −

1
2 ) is determined by the sign of q −

1
2 .

hus, fertility selection acts in a frequency dependent manner
ncrementing the frequency of the allele at PRDM9 that matches
he most abundant allele at its target locus.

In the parameter region where oscillations are observed (f <
1
2 c), the contribution of fertility relative to conversion (f −

1
2 c) to

hanges in the frequency of B1 (q) depends on the frequency of
A1 (q). It is negative when A1 is more abundant than A2 (p > 1

2 )
and positive otherwise; notice that the sign of (1 − 2µB) b

w̄
(f −
79
1
2 c)q(1−q)(p−

1
2 ) is determined by the sign of p−

1
2 . Thus fertility

relative to conversion) acts in a frequency dependent manner
ncrementing the frequency of the target allele that is matched
y the less abundant PRDM9 allele.
Finally, mutation has the effect of reducing the strength of

election very slightly (by the factors (1 − 2µA) and (1 − 2µB))
and, much more importantly, to push trajectories towards the
centre of the state space. In particular, mutation in A reduces
the frequency of A1 when A1 is the most abundant allele, that is
p > 1

2 , and mutation in B reduces the frequency of B1 when B1 is
he most abundant allele, that is q > 1

2 . By reducing the frequency
of the most abundant allele at each locus, mutation prevents the
loss of alleles.
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Fig. 5. Genetic and phenotypic dynamics with three alleles in PRDM9 and its target. Panel A. Figures represent the change over time in the frequency of alleles A1
in PRDM9 and B1 in its target locus. Alleles A2 and A3 and B2 and B3 are not represented. The first figure represents the dynamics for three initial conditions (1, 2, 3)
where the frequency of alleles B2 and B3 is the same, that is q2(0) = q3(0). The first and second initial condition, 1 and 2, lead to a limit cycle from outside and
inside of the cycle, respectively. The last condition, 3, leads to an internal equilibrium. The other three figures represent the dynamics for the three equivalent initial
conditions (1∗, 2∗, 3∗) when the initial frequency of alleles B2 and B3 are slightly different. It can be observed that trajectories transition from being regular to being
chaotic but the long-term behaviour persists—approaching a limit cycle or interior equilibrium. Panel B Figures represent the change over time in allele frequency
of alleles A1 and A2 in PRDM9 and B1 and B2 in its target locus. For clarity alleles A3 and B3 have been omitted. In each figure, the change over time in mean
crossover rate at the target has been represented. For clarity only the last 2000 generations have been represented. Here we assumed that f = 0.4, b = c = rt = 1,
rm =

1
2 . In both panels the initial conditions for the allelic frequency at PRDM9 and the linkage disequilibria remain the same, that is p1(0) = p2(0) = p3(0) =

1
3

nd D1(0) = D2(0) = D3(0) = 0 respectively.
(

The number of generations it takes for a cycle of gametic
ypes to be completed (the period of the limit cycle) changes with
he strength of fertility selection and the mutation probability.
he closer the strength of fertility selection is to 1

4 c , the longer
he period of the limit cycle (Fig. 4A). The greater the mutation
robability, the shorter the period of the limit cycle (Fig. 4A).
or sufficiently strong mutation (slightly in excess of the largest
utation rate shown in the figure), the limit cycle disappears
nd the symmetric internal equilibrium attracts all solutions.
he period of the limit cycle is relevant because it measures,
ndirectly, the life expectancy of recombination hotspots.

The number of generations required for the replacement of
ne allele at the target locus (B) relative to such a replacement
t the PRDM9 locus (A), depends on the strength of fertility
election and the mutation probability. When 1

4 c < f < 1
2 c ,

he replacement of alleles at PRDM9 is faster than that at its
80
target, which translates into oscillations of the mean crossover
probability with sudden birth of recombination hotspots and their
gradual death (Fig. 4B.ii). When 0 < f < 1

4 c , the replacement of
alleles at PRDM9 is slower than that at its target, which translates
into sudden death of recombination hotspots and their gradual
birth (Fig. 4B.i). The closer f is to 1

4 c , the lower the relative
difference between loci in the speed of replacement of alleles. The
higher the mutation probability, the lower the relative difference
between loci in the speed of replacement of alleles.

The reason why the relation between f and 1
4 c determines

whether replacement at PRDM9 is faster than at its target, or
vice versa, can be immediately inferred by comparing the rate-
determining factors of selection bf in Eqs. (29a) and b( 12 c − f ) in
29b). Obviously, bf > b( 12 c − f ) if and only if f > 1

4 c. Therefore,
the change in allele frequency at PRDM9 is faster than at its target
if f > 1

4 c , and vice versa (Fig. 4B).
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Fig. 6. Genetic and phenotypic dynamics in a system with two targets. Cubes represent the change in allele frequency in PRDM9 and target loci. Figures depict
he mean crossover probability in each of the target sites and the genome (meaning the average across all targets). These are represented both as lines and heat
aps. Panel A corresponds to the case where there are no mutations (µA = µB = µC = 0). Sub-panel A.ii shows that the dynamics converge to heteroclinic cycles
uch that both target loci are hot or cold at the same time (synchronic oscillation) and the average genomic crossover rate is variable (oscillating with the average
ecombination rate in each target). Panel B corresponds to the case where there are mutations (in particular µA = 10−6 , and µB = µC = 10−8). Sub-panel B.ii
shows that the dynamics converge to limit cycles such that one target is hot when the other is cold or vice-versa (asynchronic oscillation) and the average genomic
crossover rate is close to being constant (showing minimal oscillation). Here we assumed that f = 0.18, b = r = 1, c = r =

1 , and p(0) = q (0) = 0.9, q (0) = 0.8,
t m 2 1 2
(0) = 0.
This difference in the speed of fixation of the alleles in PRDM9
nd target loci is relevant because it would allow us to calibrate
he model for the strength of fertility selection acting on recom-
ination. In particular, a signature of a stronger selective sweep
n the PRDM9 locus (relative to its target loci) would suggest
hat the fertility loss f is between 1

4 c and 1
2 c. On the contrary, a

ignature of a stronger selective sweep at the target loci (relative
o the PRDM9 locus) would suggest that the fertility loss f is
etween 0 and 1

4 c.
81
3.2. One target: Deterministic two-locus three-allele model

In this section we explore the effect of having more than two
alleles—at both PRDM9 and its target—on the observed oscillation
of the mean crossover probability in the target site. We investi-
gate this issue by numerically iterating the recursion equations
in (3) for the particular case when PRDM9 and its target locus
have three alleles. We use these iterations to explore the time
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Fig. 7. Effect of mutation probability and selection on the asynchrony of oscillations in each target. This figure depicts the change in crossover probability at
ach of two target loci for different combinations of the mutation probability and fertility selection, along with the genome-wide mean crossover probability. This
igure shows that the greater the mutation probability the lower the overlap of hot and cold phenotypes at different target loci (the greater the asynchrony) and
he lower the oscillation of the genomic mean crossover probability. Notice that mutation does not affect the amplitude of the oscillation in each target. Here we
ssumed b = rt = 1, c = rm =

1
2 , µB = µC = 10−8 and initial frequencies of: p(0) = q1(0) = 0.9, q2(0) = 0.8, D(0) = 0.
dependence of the mean crossover probability at the target site
given by (4).

As in the previous section we focus on the case when fertility
selection is weaker than gene conversion, that is 0 < f <
1
2 c . When initially the standing variation at the target site is
high enough, the trajectories converge to an internal equilibrium
where the six gametic types are present in fixed proportions
(Fig. 5). However, when initially the standing variation at the
target site is low enough, the trajectories converge to a limit
cycle where the six gametic types oscillate permanently over time
(Fig. 5). These oscillations can be regular in the very particular
case in which the initial standing variation of the less frequent
82
alleles at the target site is exactly the same. However, even small
deviations from equal initial representation of these two alleles
results in irregular oscillations with irregular amplitude and pe-
riod (Fig. 5). This seemingly chaotic dynamics translates into per-
manent oscillations between hotspots and coldspots that reach
variable levels of crossover intensity—maxima and minima—and
life-expectancy (Fig. 5).

The intuitive explanation for these chaotic dynamics is that
fertility selection favours the PRDM9 allele that matches the most
frequent target—as suggested from the analysis of the simpler
two-allele model in the previous section. When the PRDM9 allele
that matches the most frequent target is close to fixation, the two



F. Úbeda, F. Fyon and R. Bürger Theoretical Population Biology 153 (2023) 69–90

m
s
w
p
c

3

o
p
i
t
s
(

s
W
e

s
(
a
o
n
w
(
t
t
m
l
t
t

a
a
t
c
a
i
i
P
s
o
a
a
P
t
t
t
a
g
s
t
t
a
r

c
t
g
o
I
s
b

q
t
p
g

t
c
t
d
r

ismatching alleles are equivalent from a gene conversion per-
pective. Small differences in their frequency determines which
ill be the first to overtake the most frequent target in the
opulation in its decline. However, fertility selection and gene
onversion continue to favour oscillations over evolutionary time.

.3. Two targets: Deterministic three-locus two-allele model

In this section we explore the effect of having more than
ne target on the observed oscillation of the mean crossover
robability in a target site. We investigate this issue by numer-
cally iterating the recursion equations (26). We focus on the
ime dependence of the mean crossover probabilities at the target
ites, given by Eqs. (27a) and (27b), and their genomic average in
27c).

As in previous sections, we focus on the case when fertility
election is weaker than gene conversion, that is 0 < f < 1

2 c .
hen initially the standing variation at the target site is low

nough and mutation probabilities are realistic (10−6 in PRDM9,
µA = 10−6, and 10−8 in the targets, µB = µC = 10−8), we
howed numerically that the trajectories converge to a limit cycle
Fig. 6B). In this limit cycle the two gametic types where PRDM9
nd only one of its targets match (either p = q1 = 1 and q2 = 0
r p = q2 = 0 and q1 = 1) oscillate in a regular fashion. These dy-
amics translate into permanent oscillations within each target,
ith one target being hot when the other is cold and vice-versa
Fig. 6B). That the two targets oscillate asynchronously implies
hat the mean crossover probability in the genome—across both
arget sites—remains approximately constant (Fig. 6B). When the
utation probabilities tend to zero, the two targets tend to oscil-

ate synchronously—both targets being hot at the same time—and
he mean crossover probability in the genome oscillates with the
argets (Fig. 6A).

Interestingly, we find that the mutation probability in PRDM9
nd the strength of fertility selection determine the degree of
synchrony between target loci (Fig. 7). In particular, the greater
he mutation probability, the greater the asynchrony in mean
rossover probability between target sites and the lower the vari-
tion in mean crossover probability in the genome (Fig. 7). The
ntuitive reason why both targets should oscillate asynchronously
s that fertility selection drives a selective sweep favouring the
RDM9 allele that matches the most common allele at both target
ites. When one target is almost fixed with a cold allele and the
ther with a hot allele—the target allele that matches the allele
lmost fixed at PRDM9—and conversion starts turning the hot
llele into cold copies, natural selection favours a sweep of a
RDM9 allele that matches the almost fixed cold allele at one
arget and the incipient number of cold alleles at the second
arget. The greater the frequency of the rarer allele at PRDM9,
he stronger the selective sweep. Because mutation increases the
mount of the rarer allele at PRDM9, it is expected that the
reater the mutation rate, the earlier fertility selection favours a
weep in PRDM9 that turns cold alleles into hot and vice-versa. In
he absence of mutation, fertility selection is not strong enough
o result in a sweep until both targets are almost fixed with cold
lleles. Then a selective sweep will turn both targets into hotspots
esulting in synchronous oscillations.

Similarly, the stronger fertility selection, the greater the asyn-
hrony in mean crossover probability between target sites and
he lower the variation in mean crossover probability in the
enome (Fig. 7). Our previous intuition extends to the effect
f fertility selection, f , on the asynchrony of the oscillations.
n particular, stronger fertility selection means that a selective
weep in PRDM9 that switches targets can happen earlier on,
efore both targets are coldspots.
83
3.4. Stochastic multi-target multi-allele model

Here we explore the effect of a finite population size on the
observed oscillations of the mean crossover probability near a
target site. We investigate this issue by exploring simulations
of the multi-target multi-allele model described in the models
section.

As in previous sections, we focus on the case when fertility
selection is weaker than gene conversion, that is 0 < f <
1
2 c. We find that the behaviour of the system does not change
ualitatively when considering small populations and/or more
han two target loci. In particular, we show that the crossover
robability in individual target sites oscillates widely while the
enome’s crossover probability is more stable (Fig. 8B).
For the two-target case, we investigate the dependence on

he mutation rate of the period of the oscillations of the mean
rossover probabilities at each target. Fig. 9A displays
heir means and standard deviations. It shows that the period
ecreases by about two orders of magnitude as the mutation
ate increases from 10−8 to 10−6. Fig. 9B illustrates that the
stochasticity in the model induces ample variation in the number
of generations between two successive shifts from hot to cold.

We also explore the dependence on the population size of the
period of the oscillations of the mean crossover probabilities at
each target. As Fig. 8 shows, the turnover of hotspots accelerates
as the population size increases from N = 5000 to N = 10 000
individuals. The reason is that in finite populations genetic drift
favours the loss of rare alleles that need to be recreated for a
selective sweep to occur. As the recreation of alleles is driven
by mutations (which are rare), stronger genetic drift (smaller
population size) lengthens hot and cold phases, thus increasing
the average period of oscillations. We also explored differences in
genomes with two and ten target loci. We find that in both cases
the crossover rate in individual target sites oscillates widely, with
the turnover of hotspots decelerating as the number of targets
increases (Fig. 8).

In our deterministic models, for simplicity, we assumed that
there would be one double strand break only. However, it is more
realistic to assume that there would be multiple break attempts
with the individual experiencing a fertility cost when none of
them is successful. In our stochastic model we allow for multiple
double strand breaks. We find that compared to the case when
there is one break attempt, in the extreme case when there are
ten break attempts the targets become cold quicker and selection
for the matching PRDM9 allele is not strong enough until almost
all targets are cold. While the oscillatory behaviour remains, this
oscillation involves less hotpots in a colder genome (Fig. 10). Thus
the fraction of targets that are actual recombination hotspots
should be affected by the level of expression of PRDM9.

3.5. Choice of parameter values

To illustrate our findings we often use variants of a small set
of parameter values. This choice of values does not condition
our findings. We have explored a much larger set of parameter
values and chosen those parameter values that produce illustra-
tive figures. In particular we choose rm =

1
2 because PRDM9

in the majority of cases far from it target or even in another
chromosome. Empirical results show that c ≈

1
2 (Jeffreys and

Neumann, 2002, 2005). There are no empirical measurements of
b or f . However, what b does primarily is to change the speed
of the allele-frequency dynamics by making oscillations faster or
slower. Finally we explored a wide range of values of f .
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Fig. 8. Effect of population sizes and number of targets on the speed of hotspot oscillations in finite populations. Panel A shows the average period of an
scillation between hot and cold states. Blue and orange dots represent the average value of the period (for two targets in 100 thousand generations) when the
opulation size is five and ten thousand individuals respectively. The grey dot represents the equivalent value for an infinite population. Vertical bars correspond to
he standard deviation. We make the conservative assumption that there is only one attempt to produce one double strand break per genome per generation. Panel
B shows examples of the dynamics. Examples are arranged in a table with five and ten thousand individuals in the columns and two and ten loci in the rows. This
figure shows that the smaller the population size or the greater the number of target loci, the greater is the period of hotspot oscillations. Here we assumed that

f = 0.4, b = c = rt = 1, rm =

1
2 (the recombination rate between any pair of loci is also 1

2 ), µA = 10−6 , µB = 10−7 , and p(0) = 0.95, q(0) = 0.95, D(0) = 0.
4. Discussion

In this research we focus on a model of the co-evolution be-
tween PRDM9, segregating two alleles, and one target site, segre-
gating two motifs. We find that introducing recurrent mutations
in PRDM9 and its target site can result in a balance between the
resuscitation and death of hotspots that prevents their extinction
over evolutionary time. Therefore, the long-term co-evolutionary
oscillation between PRDM9 alleles and its target motifs can solve
the recombination hotspots paradox by driving the resuscitation
84
of hotspots over and over again. In the more realistic case when
fertility selection is weaker than conversion, we find two possible
dynamics. When the standing genetic variation at the target site
is high, co-evolutionary oscillations between PRDM9 alleles and
its target motifs settle into a polymorphic equilibrium corre-
sponding to a fixed intermediate crossover probability (Fig. 2).
This is consistent with previous results in the absence of muta-
tion (Úbeda et al., 2019). However, when the standing variation
at the target site is low, co-evolutionary oscillations between
PRDM9 alleles and their target motifs are regular and permanent.
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Fig. 9. Effect of the mutation probability on the rate of hotspot oscillations in a finite population. Panel A shows the average period of an oscillation between
ot and cold states for different mutation probabilities. Dots represent the average value of the period for a population size of 5000. Vertical bars show the standard
eviation. To ensure that the variances are calculated over a similar number of cycles, we performed these computations for 10 000 generations if µA = µB = 10−6 ,
or 100 000 generations if µA = µB = 10−7 , and for 1 000 000 generations if µA = µB = 10−8 . Panel B shows the change in recombination over time in each target
nd the average for the genome. We explored three mutation rates that differ in one order of magnitude, namely 10−8 , 10−7 , and 10−6 . The first row shows the
otspots dynamics for the periods of time 1000000, 100000, and 10000 generations; time changes one order of magnitude with their corresponding mutation
robability. This row illustrates how increasing the sampling time one order of magnitude produces similar number of oscillation in the three mutation probabilities
onsidered. In the second row we show the dynamics when the sampling time remains constant. This row illustrates how mutation probabilities increase the rate
f oscillations. The parameter values used to create this figure are f = 0.4, b = c = rt = 1, rm =

1
2 , and p(0) = 0.95, q(0) = 0.99, D(0) = 0 and N = 5000.
hese oscillations result in a limit cycle where hotspots and
oldspots alternate, reach the same levels of crossover maxima
nd minima, and exhibit constant life-expectancy (Fig. 2). This
esult diverges significantly from previous ones in the absence of
utation where, contrary to empirical evidence, the target site
ecomes cold or hot permanently (Úbeda et al., 2019). Because
his novel dynamics do not settle over evolutionary time they
rovide a solution to the paradox.
In general, we find low levels of standing genetic variation

n the target site can lead to permanent oscillations in crossover
ates. However, the amount of standing variation leading to per-
anent oscillations depends on the strength of fertility selection
nd the mutation probability. Given the mutation probability,
he greater the strength of fertility selection, the greater the
ange of standing variation leading to oscillation (Fig. 3). Given
he strength of fertility selection, the greater the mutation rate,
he smaller the range of standing variation leading to oscillation
Fig. 3). The relevance of standing variation for the formation
f recombination hotspots had not been appreciated by previ-
us research (Baudat et al., 2010; Úbeda and Wilkins, 2011;
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Latrille et al., 2017). Interestingly, we find that whenever fertility
selection is weaker than conversion there is negative linkage
disequilibrium between alleles in PRDM9 and its target site. This
means that there is an excess of combinations of mismatching
alleles at PRDM9 and its target sites. This results in a lower re-
combination rate than would be expected if proteins and targets
where to bind randomly (see equation (A.9)). Furthermore, we
find that the negative linkage disequilibrium is stronger in the
polymorphic equilibrium than in any part of the orbit of the limit
cycle (Fig. 2A).

We find that it is Red Queen dynamics between matching
PRDM9 alleles and matched target alleles that can solve the para-
dox. Our results thus substantiate verbal arguments in Úbeda and
Wilkins (2011). The term Red Queen dynamics refers specifically
to the long-term co-evolutionary dynamics where oscillations
in genotype abundance are driven by fluctuating selection (Van
Valen, 2019; Schenk et al., 2017, 2020). In our research we did not
model selection to be explicitly frequency dependent. However, it
can be appreciated from our Eqs. (29) that strength and direction
of selection acting on PRDM9 alleles change with the frequency
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Fig. 10. Comparison of the dynamics when there is one DSB attempt as opposed to multiple DSBs. Panel A Shows the dynamics in a model when there is only
ne DSB attempt. Panel B Shows the dynamics in a model when there are ten DSB attempts (as many as target loci). In both cases gametes are fully viable when
here is at least one crossover event. This figure shows that the greater the number of DSB attempts the colder the genome before a matching PRDM9 allele is
riven to fixation. Here we assumed that f = 0.4, b = c = rt = 1, rm =

1
2 (the recombination rate between any pair of loci is also 1

2 ), µA = 10−6 , µB = 10−7 , and
p(0) = 0.95, q(0) = 0.95, D(0) = 0.
of alleles at the target site, and strength and direction of selection
acting on target alleles change with the frequency of alleles at the
PRDM9 locus.

We emphasise that, in models of recombination driven by
PRDM9, alleles at target sites are not hot or cold per se, instead
whether they are hot or cold depends on the genetic background
provided by the PRDM9 allele. In our model thus, both alleles at
the target site can be hot when matched by the genetic back-
ground in PRDM9, and both can be cold when mismatched by
PRDM9. When perfectly matched by the genetic background, gene
conversion favours the mismatched (cold) allele at the target
site—thus initiating the death of the hotspot. Fertility selection
favours the matching genetic background while the mismatched
(cold) allele is less frequent than the matched (hot) one—thus al-
lowing the death of the hotspot. However, when the mismatched
allele becomes more frequent than the matched one, fertility
selection favours the alternative genetic background matching
the mismatched allele—thus initiating the resuscitation of the
hotspot. Our model shows that PRDM9 is selected to matching
the most abundant target at any given time. As a result, each
of the four combinations of PRDM9 backgrounds and targets can
be temporarily best adapted, which explains the oscillations. In
our model, fertility selection fluctuates, thus driving (together
with conversion) oscillations between hot and cold alleles that
do not settle in the long-term thanks to mutation. Therefore, the
dynamics that can solve the paradox meets all the requirements
of Red Queen dynamics (Van Valen, 2019; Schenk et al., 2017,
2020).
86
Our model of the co-evolution between PRDM9 segregating
two alleles and one target site segregating two motifs (a two-
locus two-allele model) does not correspond to the reality of
PRDM9 segregating multiple alleles and having many target sites,
each segregating multiple motifs. An exhaustive study of the
dynamics of all possible multi-allele multi-target extensions of
our model is beyond the scope of this research. However, we
gain insight into the effect of having multiple alleles by adding to
our two-locus two-allele (one-target) model, one allele at PRDM9
and one motif at its target to formulate a two-locus three-allele
(one-target) model. We further gain insight into the effect of
having multiple targets by adding to our two-locus two-allele
(one-target) model, one target segregating the same motifs as the
existing target to formulate a three-locus (two-target) model.

We find that adding a third allele at both PRDM9 and its
target site still can result in a balance between resuscitation and
death of hotspots that prevents their extinction and solves the
paradox. When fertility selection is weaker than conversion, co-
evolutionary oscillations between alleles at PRDM9 and its target
can be permanent, but they often become highly irregular and
result in cycles where hotspots and coldspots alternate, with
hotspots reaching different levels of crossover maxima in each
oscillation and showing variable life-expectancy (Fig. 5). Because
these chaotic dynamics do not settle in the long-term, they are
chaotic Red Queen dynamics (Schenk et al., 2017, 2020) that
can solve the paradox as well. The association between low
standing variation with ample irregular oscillations approaching
a limit cycle and high standing variation with narrow irregular
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scillation approaching a polymorphic equilibrium is still present
n the three-allele model (Fig. 5). An exhaustive exploration of
his model would be of interest for future research.

We find that adding a second target can also result in a balance
etween resuscitation and death of hotspots that prevents their
xtinction and solves the paradox. However, resuscitation and
eath alternate between targets (with one target resuscitating
hen the other is dying and vice versa), thus maintaining the
enome’s mean crossover probability close to constant. When
ertility selection is weaker than conversion and there are low
evels of standing variation in target sites, co-evolutionary oscil-
ations between PRDM9 alleles and its two targets can be regular
nd permanent in each target. These oscillations result in cycles
here hotspots and coldspots alternate, with hotspots reaching
he same levels of crossover maxima, and having constant life-
xpectancy (Fig. 6). In principle, the two target sites can be hot
nd cold at the same time—they oscillate synchronously—or one
arget site can be hot while the other is cold—they oscillate asyn-
hronously. When targets oscillate synchronously, the genome’s
rossover probability oscillates with them. When targets oscil-
ate asynchronously, the genome’s crossover probability remains
early constant. An exhaustive exploration of this model would
e of interest for future research.
Interestingly, we find that mutations are key in maintaining a

onstant crossover probability across the genome while permit-
ing the recombination rate in each site to oscillate widely. We
ind that the greater the mutation rate in PRDM9 (relative to its
arget sites) and the stronger the fertility selection, the smaller
re the fluctuations in the genome’s crossover probability (Fig. 7).
he intuitive reason for this is that the recombination rate in one
arget conditions the strength of fertility selection in the other
argets. The more coldspots there are, the greater is the strength
f fertility selection acting to resuscitate hotspots. The greater
he availability of matching PRDM9 mutants, the weaker is the
trength of fertility selection necessary to resuscitate hotspots.
herefore, with lower mutation probability and/or fertility cost,
he two targets need to be cold before selection favours a switch
esulting in all targets becoming hot (synchronous oscillation).
ith higher mutation probability and/or fertility cost, only one

arget needs to be cold before selection favours a switch resulting
n some of the targets becoming hot while the others become cold
asynchronous oscillation) (Fig. 7).

Because populations are finite, a solution to the Recombi-
ation Hotspots Paradox needs to hold in finite populations.
ffectively, the dynamics in finite populations result from adding
oise (genetic drift) to the underlying dynamics in infinite pop-
lations (cf. Schenk et al., 2017, 2020). Therefore having char-
cterised the deterministic co-evolutionary dynamics between
RDM9 and its target sites we are in a good position to better
nderstand its equivalent stochastic dynamics. We find that many
f the qualitative results observed in infinite populations ex-
end to finite populations. In particular, similarly to deterministic
indings, when fertility selection is weaker than conversion and
here are low levels of standing variation in target sites, co-
volutionary oscillations between PRDM9 alleles and its targets
an be permanent in each target. As a result there are cycles
here hotspots and coldspots alternate, and hotspots reach high

evels of crossover probabilities at each target but the crossover
robability across the genome remains nearly constant (Fig. 8).
We find that the number of break attempts affects the tem-

erature of the genome without affecting the ability of fertility
election to drive the resuscitation of hotspots. We observe that
ultiple break attempts reduce the probability that there will be
o crossover events at the target loci. Therefore they reduce the
trength of fertility selection for hot alleles. However, multiple
reak attempts accelerate the strength of conversion turning
87
hotspots into coldspots. As hotspots are turned into coldspots the
strength of fertility selections for hot alleles mounts. When the
genome is cold enough fertility selection drives the fixation of a
hot allele in PRDM9 leading to the resuscitation of hotspots. What
is significant is that the oscillatory behaviour is still observed.
However, by increasing the number of break attempts reduces
the fraction of targets that are hotspots and the temperature of
the genome (Fig. 10). This suggests that the level of expression
of PRDM9 can control the fraction of targets that are hotspots at
any given time.

Oscillations of the same set of alleles correspond to the resus-
citation of hotspots whereas the introduction of new alleles can
correspond to the birth of new hotspots. We notice that even in
the absence of births, resuscitation can prevent the extinction of
hotspots thus solving the paradox. We expect that to avoid the
potential cost of disrupting a functional gene, eventually, oscilla-
tions will be limited to a set of tried and tested PRDM9 alleles
and its target motifs, that is mostly resuscitation of hotspots. It
is important to notice that even thought our model shows that
it is the same set of target sites that oscillate between hot and
cold states, this does not mean that a two species (or subpop-
ulations) will share the same hotspots. Much on the contrary
our model shows that only a fraction of the target sites in the
entire genome will be recombination hotspots. It also shows that
the set of target sites that are recombination hotspots and their
distribution changes rapidly. Therefore, in our model, it is highly
unlikely that two snapshots of the distribution of hotspots in two
species will show many shared hotspots. In this sense our model
not only explains the rapid evolution of hotspots but also the
observation that humans and chimpanzees do not share many
recombination hotspots and even human subpopulations exhibit
some level of recombination hotspot variation (Ptak et al., 2004,
2005; Winckler et al., 2005; Coop et al., 2008; Stevison et al.,
2015). The resuscitation of hotspots thus is sufficient to explain
the lack of shared recombination hotspots without the need to
invoke the birth of hotspots.

In general we find that the long-term co-evolutionary oscilla-
tion between PRDM9 alleles and its target motifs can drive the
resuscitation of hotspots over and over again. This result holds
with multiple alleles at each locus, multiple targets and multiple
targets. While each hotspot can reach high and low levels of
crossover, the average across the genome remains almost con-
stant due to the asynchrony of oscillations. Furthermore we find
that mutation is key in the Red Queen dynamics underlying the
permanent and asynchronous oscillation of individual recombina-
tion hotspots. Therefore, our findings contribute to solving the Re-
combination Hotspot Paradox by reconciling the self-destructive
nature of PRDM9-directed recombination hotspots with the re-
suscitation of hotspots to maintain the elevated number of such
hotspots observed in various species (Boulton et al., 1997). The
findings of our model are consistent with all salient features of
recombination hotspots, namely the death of individual hotspots,
the preservation of hotspots at the genome level, and the rapid
change of the recombinational landscape (with hotspots rarely
being shared between closely related species).

Besides offering a plausible solution to the paradox, our re-
search offers the possibility of calibrating our model against ge-
nomic data. Such calibration would allow quantitative predictions
for the life expectancy of hotspots given different effects of re-
combination on fertility. This, in turn, can be used to study the
signature of oscillatory recombination on linkage disequilibrium
in the mammalian genome, a pattern that is relevant to a better
understanding of links between alleles and diseases. In addi-
tion, our work suggests that signatures of selective sweeps in
PRDM9 relative to those in its targets should provide a method
for calibrating the strength of fertility selection on recombination.
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ppendix

.1. Modelling the interaction of recombination and gene conversion

The precise form of the recursion equation (1) depends on
ssumptions on interactions between recombination—between
RDM9 and its target—with gene conversion—at the target. In the
ain text, we assumed that PRDM9 and its target sit on the same
hromosome and thus it is most appropriate to consider recombi-
ation between the pair of homologous chromatids experiencing
double strand break but not the other pair. If we assume that
RDM9 and its target sit on different chromosomes, then recom-
ination between all four chromatids has to be taken into ac-
ount. In this case, the term rm

(
(1 − c) F ¯̄bij,kl + (1 −

¯̄bij,kl)(1 − f )
)

in the last line of Eq. (1) has to be replaced by
rm

((
1 −

1
2 c

)
F ¯̄bij,kl + (1 −

¯̄bij,kl)(1 − f )
)
. Notice that the only ef-

ect of changing these assumptions on the recursion equations, as
iven by (5) or the resulting matrix form (15), is that the effective
ecombination rate δrm in (9) becomes

rm =
(
1 −

1
2b

)
(1 − f )rm +

1
2b(1 − f (1 − rt ))

( 1
4 c + (1 −

1
2 c)rm

)
.

(A.1)

hus, if rm =
1
2 and rt = 1, we obtain δ =

1
2

(
1 − (1 −

1
2b)f

)
,

hich, as expected, is slightly larger than in the δ in (10). The
ualitative properties of the dynamics remain unchanged. Quanti-
atively, there is slightly less linkage disequilibrium and the basin
f attraction of the stable limit cycle is slightly increased.

.2. Equilibria in the absence of mutation

Here we show that in the absence of mutation and if β ̸= γ ,
no other equilibria than the four corner equilibria and the internal
equilibrium x∗5 exist. From Eq. (21a) we infer that equilibria must
satisfy p = 0 or p = 1 or q =

1
2 . If p = 0 or p = 1, then D = 0

must hold (otherwise the equilibrium is not in the state space, the
simplex). Therefore, (21b) yields q = 0 or q = 1, whence (21c)
yields ∆D = 0.

Now assume q =
1
2 . Then (21b) yields p =

1
2 at equilibrium.

ubstituting p = q =
1
2 into the right-hand side of (21c) yields

the cubic equilibrium condition

(1 + 2βD)
[
(γ − β)D2

− δD −
1
16 (γ − β)

]
= 0 . (A.2)

The solution D = −1/(2β) is not admissible because then
w̄ = 0 by (20). The remaining quadratic has the solutions

D∗

0 = −

√
(γ − β)2 + 4δ2 − 2δ

(A.3)

4(γ − β)
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and −

√
(γ−β)2+4δ2+2δ

4(γ−β) , but the latter is not admissible because
its value is outside the interval [−

1
4 ,

1
4 ] under the parameter

constraints (19). Therefore, the only internal equilibrium is x∗5,
and it has the coordinates p = q =

1
2 and D = D∗

0. We note
that D∗

0 is negative if and only if γ > β (cf. Úbeda et al., 2019).
Therefore, there exist precisely five equilibria

The case β = γ is degenerate (but only in the absence of
utation!). Simple calculations show that then the line segment
=

1
2 , D = 0, and 0 < p < 1 consists of internal equilibria, and

on the boundary p = 0 and p = 1 (with) D = 0) are lines of
equilibria.

A.3. Equilibria with weak mutation

A weak-mutation approximation or a weak-mutation pertur-
bation of an equilibrium is achieved by assuming µA = ϵmA and
µB = ϵmB, where mA ≥ 0 and mB ≥ 0 are fixed, and then
performing a series expansion of the relevant expressions to first
order in ϵ. Finally, the substitutions mA → µA/ϵ and mB →

µB/ϵ yield the desired approximation or perturbation in terms
of the original parameters. The coordinates of the perturbed
corner equilibria can be computed readily (see Supplementary
Mathematica notebook, Section 3.2, where also the linear stability
analysis can be found). To leading order in µA and µB, they are
given by

x∗1
1 ≈ 1 − [µBβ + µA(β − γ )]

1 + β

β(β − γ )
,

x∗1
2 ≈ µB

1 + β

β − γ
,

x∗1
3 ≈ µA

1 + β

β
,

x∗1
4 ≈ 0

(A.4)

and those of x∗4 are symmetric, i.e.,

x∗4
1 = x∗1

4 , x∗4
2 = x∗1

3 , x∗4
3 = x∗1

2 , x∗4
4 = x∗1

1 . (A.5)

With or without mutation, there always exists a symmetric
internal equilibrium, which we denote by x∗5. We start by pre-
senting its coordinates. Because the probability that no mutation
occurs is (1 − 2µA)(1 − 2µB), the total mutation probability is

µtot = 1 − (1 − 2µA)(1 − 2µB) . (A.6)

Then the symmetric internal equilibrium is given by (Supplemen-
tary Mathematica notebook, Section 3.5)

p∗
= q∗

=
1
2 (A.7a)

and

D∗
=

2δ(1 − µtot) + 2µtot −
√
R

4(γ − β) − 4µtot(β + γ )
, (A.7b)

where

R = 4[δ(1−µtot)+µtot]
2
+γ 2(1−µtot)2−2βγ (1−µtot)+β2(1−µ2

tot) .

(A.7c)

It is straightforward to show that D∗ < 0 if and only if γ > β

(also in the degenerate case when µtot =
γ − β

β + γ
), D∗ > 0 if and

only if γ < β , and D∗
= 0 if and only if γ = β .

In the degenerate case µtot =
γ − β

β + γ
, one obtains

D∗
= −

β(γ − β)
8(γ − β + 2βδ)

, (A.7d)

which is also negative because this case requires γ > β .

https://10.5281/zenodo.8098998
https://10.5281/zenodo.8098998
https://10.5281/zenodo.8098998
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Assuming weak mutation, we observe that µtot ≈ 2(µA +

B). A simple perturbation analysis, as outlined above, yields the
ollowing first-order approximation for D∗:
∗

≈ D∗

0 + (µA + µB)D∗

1 , (A.8a)

here

∗

1 =

2(γ − β + 2βδ)
(√

(γ − β)2 + 4δ2 − 2δ
)

− β(γ − β)2

2(γ − β)2
√
(γ − β)2 + 4δ2

,

(A.8b)

nd D∗

0 is given in (A.3). Recall from above that D∗

0 < 0 if and
nly if γ > β . Because the coefficient D∗

1 of µA + µB is positive
f and only if γ > β , we find that mutation weakens linkage
isequilibrium by reducing the absolute value of D∗.
Finally, we derive an explicit expression for the population

ean crossover probability r̄t at the internal equilibrium x∗5.
hat is of relevance is r̄t/rt =

1
2b(x1 + x4 − D). If p = q =

1
2 ,

t follows from the transformations between gamete frequencies
nd allele frequencies and LD (Section 2.2.2) that x1 + x4 − D =

1
2 +D. Substituting D by the above expression for D∗ in (A.8a), we
btain to leading order in µ (= µA = µB):

¯t/rt =
1
4
b
[
1 −

√
(γ − β)2 + 4δ2 − 2δ

2(γ − β)

+ µ
2(γ − β + 2βδ)

(√
(γ − β)2 + 4δ2 − 2δ

)
− β(γ − β)2

2(γ − β)2
√
(γ − β)2 + 4δ2

]
.

(A.9)

f γ > β , this is always less than 1
4b, thus less than

1
2 of its values

t an active hotspot (when x1 or x4 is close to 1). Note that with
stronger mutation, r̄t/rt increases (very slightly).

A.4. Attractors exhibit negative linkage disequilibrium if γ > β

Throughout this subsection, we assume γ > β and δ ≥ β .
owever, a simple calculation shows that the latter is satisfied
henever γ > β . As a first step, we prove that D ≥ 0 implies
(rs)D ≤ 0 and ∆(rs)D = 0 only on the edges at which one locus

is fixed. Let D ≥ 0. The right-hand side of (21c) can be written as
d1 + d2 + d3 + d4, where

d1 = −(γ − β)p(1 − p)q(1 − q) + (γ − β)D2 ,

d2 = −[1 + β(2p − 1)(2q − 1)][δ + β(2p − 1)(2q − 1)]D ,

d3 = −βp(1 − p)[γ − 2(β + γ )q(1 − q)]D + 2β(γ − β)D3 ,

d4 = [β(γ − 3β)(2p − 1)(2q − 1) − 2βδ]D2 .

Because D2
≤ p(1 − p)q(1 − q) and γ > β , we have d1 ≤ 0

and d1 = 0 only if one of the allele frequencies vanishes. Because
β < min{δ, 1}, each of the two factors in brackets is positive and
we conclude that d2 ≤ 0 if D ≥ 0. Next, we rewrite d3 as

d3 = −βD
{
γ p(1 − p) − 2(β + γ )p(1 − p)q(1 − q) − 2(γ − β)D2} .

Then, because D2
≤ p(1 − p)q(1 − q), we derive

γ p(1 − p) − 2(β + γ )p(1 − p)q(1 − q) − 2(γ − β)D2

≥ γ p(1 − p) − 2p(1 − p)q(1 − q)[(β + γ ) + (γ − β)]
= γ p(1 − p)[1 − 4q(1 − q)] ≥ 0.

Therefore, d3 ≤ 0. Finally, we have β(γ − 3β)(2p − 1)(2q − 1) −

2βδ ≤ β(|γ − 3β| − 2δ). If γ ≤ 3β , then |γ − 3β| − 2δ =

3β − γ − 2δ = 2(β − δ) + β − γ < 0. If γ > 3β , then
|γ − 3β|−2δ = γ −3β −2δ < 0 by using δ ≥

1
2γ from (19). This

hows that d4 ≤ 0. Therefore, ∆(rs)D ≤ 0 if D ≥ 0 and ∆(rs)D < 0
unless at least one of the alleles is absent.
89
If mutation is weak (but present), so that the higher-order
mutation terms in (22c) can be ignored, it follows immediately
that ∆D < 0 if D ≥ 0. In a similar way it can be proved that
D′ < 0 if D < 0 (see Supplementary Mathematica notebook,
Section 2.5). Hence, trajectories not only enter the region D′ < 0
but also remain there. Therefore, the statement that attractors
exhibit negative linkage disequilibrium follows.
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